
Group members are indicated bold italics
[15] Ávila-Bolívar, B.; Cepitis, R.; Alam, M.; Assafrei, J.-M.; Ping, K.; Aruväli, J.; Kikas, A.; Kisand, V.; Vlassov, S.; Käärik, M.; Leis, J.; Ivaništštev, V.; Starkov, P.; Montiel, V.; Solla-Gullón, J.; Kongi, N.* CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst.
J. CO2 Util. 2022, 59, 101937.
DOI:10.1016/j.jcou.2022.101937
[14] Ping, K.; Alam, M.; Kahnert, S. R.; Bhadoria, R.; Mere, A.; Mikli, V.; Käärik, M.; Aruväli, J.; Paiste, P.; Kikas, A.; Kisand, V.; Järving, I.; Leis, J.; Kongi, N.*; Starkov, P.* Multi-purpose chemo- and electrocatalyst material from an amorphous cobalt metal–organic framework.
Mater. Adv. 2021, 2, 4009-4015.
[13] Kazimova, N.; Ping, K.; Alam, M.; Danilson, M.; Merisalu, K.; Käärik, M.; Mikli, V.; Aruväli, J.; Paiste, P.; Leis, J.; Tammeveski, K.; Starkov, P.;* Kongi, N.* Shungite-derived graphene as a carbon support for bifunctional oxygen electrocatalysts.
J. Catal. 2021, 395, 178–187.
DOI:10.1016/j.jcat.2021.01.004
[12] Bhadoria, R.; Ping, K.; Lohk, C.; Järving, I.; Starkov, P.* A phenotypic approach to probing cellular outcomes using heterobivalent constructs.
Chem. Commun. 2020, 56, 4216–4219.
ChemRxiv preprint.
[11] Ping, K.; Braschinsky, A.; Alam, M.; Bhadoria, R.; Mihkli, V.; Mere, A.; Aruväli, J.; Paiste, P.; Vlassov, S.; Kook, M.; Rähn, M.; Sammelselg, K.; Tammeveski, K.; Kongi, N.;* Starkov, P.* Fused hybrid linkers for metal–organic framework-derived bifunctional oxygen electrocatalysts.
ACS Appl. Energy Mater. 2020, 3, 152–157.
ChemRxiv preprint.
[10] Ping, K.; Alam, M.; Käärik, M.; Leis, J.; Kongi, N.; Järving, I.; Starkov, P.* Surveying iron–organic framework TAL-1 derived materials in ligandless heterogenous oxidative catalytic transformations of alkylarenes.
Synlett 2019, 30,1536–1540.
DOI:10.1055/s-0037-1611877 [Invited]
[9] Kasak, L.; Näks, M.; Eek, P.; Piirsoo, A.; Bhadoria, R.; Starkov, P.; Saarma, M.; Kasvandik, S.; Piirsoo, M.* Characterization of protein kinase ULK3 regulation by phosphorylation and inhibition by small molecule SU6668.
Biochemistry 2018, 57, 5456–5465.
DOI:10.1021/acs.biochem.8b00356
Without PhD advisor
[8] Starkov, P.; Moore, J. T.; Duquette, D. C.; Stoltz, B. M.;* Marek, I.*. Enantioselective construction of acyclic quaternary carbon stereocenters: Palladium-catalyzed decarboxylative allylic alkylation of fully substituted amide enolates.
J. Am. Chem. Soc. 2017, 139, 9615–9620.
[7] Starkov, P.; Jamison, T. F.; Marek, I.* Electrophilic amination: The case of nitrenoids.
Chem. Eur. J. 2015, 21, 5278–5300.
[6] Starkov, P.; Zemskov, I.; Sillard, R.; Tšubrik, O.; Mäeorg, U.* Copper-catalyzed N-arylation of carbamate-protected hydrazones with organobismuthanes.
Tetrahedron Lett. 2007, 48, 1155–1157.
DOI:10.1016/j.tetlet.2006.12.071
With PhD advisor
[5] Lanigan, R. M.; Karaluka, V.; Sabatini, M. T.; Starkov, P.; Badland, M.; Boulton, L. T.; Sheppard, T. D.* Direct amidation of unprotected amino acids using B(OCH2CF3)3.
Chem. Commun. 2016, 52, 8846–8849.
[4] Lanigan, R.; Starkov, P.; Sheppard, T. D.* Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3.
J. Org. Chem. 2013, 78, 4512–4523.
[3] Starkov, P.; Rota, F.; D’Oyley.; Sheppard, T. D.* Catalytic electrophilic halogenation of silyl‐protected and terminal alkynes: Trapping gold (I) acetylides vs. a Brønsted acid‐promoted reaction.
Adv. Synth. Catal. 2012, 354, 3217–3224.
[2] Starkov, P.; Sheppard. T. D.* Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides.
Org. Biomol. Chem. 2011, 9, 1320–1323.
[1] Körner, C.; Starkov, P.; Sheppard, T. D.* An alternative approach to aldol reactions: Gold-catalyzed formation sof boron enolates from alkynes.
J. Am. Chem. Soc. 2010, 132, 5968–5969.
Intellectual Property
[1] Kongi, N.; Tammeveski, K.; Starkov, P.;* Ping, K. Novel catalytic materials.